Kongruensi dan Homomorfisma (m,n)-Seminearring

Abstract View: 24, PDF Download: 10

Authors

  • Muhsang Sudadama Lieko Liedokto Universitas Negeri Malang
  • Mu’amar Musa Nurwigantara Universitas Gadjah Mada

DOI:

https://doi.org/10.32665/james.v7i1.1913

Keywords:

kongruensi, seminearring, aljabar universal, semiring terner, congruence, ternary semiring, universal algebra

Abstract

Struktur (m,n)-seminearring merupakan generalisasi dari seminearring, dimana operasi biner penjumlahan dan perkalian diganti dengan operasi m-ary dan n-ary, yang keduanya belum tentu komutatif. Tujuan dari penelitian ini adalah membuktikan teorema fundamental homomorfisma dan sifat-sifat kongruensi pada (m,n)-seminearring yang berkaitan dengan homomorfisma. Metode yang digunakan dalam penelitian ini adalah mengadopsi sifat-sifat kongruensi pada n-semigrup, semiring terner, (m,n)-semiring, seminearring, seminearring terner, dan aljabar universal.

References

J. W. Grzymala-Busse, “Automorphisms of Polyadic Automata,” J. ACM, vol. 16, no. 2, pp. 208–219, Apr. 1969, doi: https://doi.org/10.1145/321510.321512.

D. Nikshych and L. I. Vainerman, “Finite Quantum Groupoids and Their Applications,” arXiv, 2000, doi: https://doi.org/10.48550/arXiv.math/0006057.

Z. Stojaković and W. A. Dudek, “Single Identities for Varieties Equivalent to Quadruple Systems,” Discrete Math., vol. 183, no. 1, pp. 277–284, 1998, doi: https://doi.org/10.1016/S0012-365X(97)00060-5.

R. Kerner, “Ternary Algebraic Structures and Their Applications in Physics,” arXiv, p. 15, 2000, [Online]. Available: http://arxiv.org/abs/math-ph/0011023.

L. Vainerman and R. Kerner, “On Special Classes of n-algebras,” J. Math. Phys., vol. 37, no. 5, pp. 2553–2565, 1996, doi: https://doi.org/10.1063/1.531526.

A. P. Pojidaev, “Enveloping Algebras of Filippov Algebras,” Commun. Algebr., vol. 31, no. 2, pp. 883–900, 2003, doi: https://doi.org/10.1081/AGB-120017349.

G. L. M. Charles F. Laywine, Discrete mathematics Using Latin Squares, 1st ed. Wiley, 1998.

W. G. Lister, “Ternary Rings,” Trans. Am. Math. Soc., vol. 154, pp. 37–55, Jan. 1971, doi: https://doi.org/10.2307/1995425.

G. Crombez and J. Timm, “On (n,m)-rings,” Abhandlungen aus dem Math. Semin. der Univ. Hambg., vol. 37, pp. 200–203, 1972, doi: https://doi.org/10.1007/BF02999696.

T. K. Dutta and S. Kar, “On Regular Ternary Semirings,” in Proceedings of the ICM Satellite Conference in Algebra and Related Topics, 2003, pp. 343–355, doi: https://doi.org/10.1142/9789812705808_0027.

M. S. Pop and A. Pop, “Some Properties of Generalized Semirings,” Carpathian J. Math., vol. 24, no. 3, pp. 397–402, 2008.

R. Vijayakumar and D. Bharathi, “On Ternary Seminear Rings,” Int. J. Math. Trends Technol., vol. 66, no. 10, pp. 170–177, 2020, doi: https://doi.org/10.14445/22315373/ijmtt-v66i10p521.

M. S. L. Liedokto, “Struktur (m,n)-seminearring,” in Seminar Nasional Pendidikan Matematika (SNPM) 2023 UNIPA Surabaya, 2023, pp. 540–552, [Online]. Available: https://snpm.unipasby.ac.id/prosiding/index.php/snpm/article/view/191.

V. N. Dixit and S. Dewan, “Congruence and Green’s Equivalence Relation on Ternary semigroup,” Commun. Ser. A1 Math. Stat., vol. 46, pp. 103–117, 1997, doi: https://doi.org/10.1501/Commua1_0000000429.

A. Chronowski, “Congruences on Ternary Semigroups,” Ukr. Math. J., vol. 56, no. 4, pp. 662–681, 2004, doi: 10.1007/s11253-005-0010-4.

S. Kar and B. Maity, “Congruences On Ternary Semigroups,” J. Chungcheong Math. Soc., vol. 20, pp. 191–201, Jan. 2007.

C. Somsup and U. Leerawat, “Congruences and Homomorphisms on n-ary Semigroups,” Int. J. Math. Comput. Sci., vol. 15, no. 2, pp. 671–682, 2020.

J. S. Golan, Semirings and Their Applications, 1st ed. Haifa: Springer, Dordrecht, 1999.

S. E. Alam, S. Rao, and B. Davvaz, “(m,n)-semirings and a Generalized Fault-tolerance Algebra of Systems,” J. Appl. Math., vol. 2013, p. 482391, 2013, doi: https://doi.org/10.1155/2013/482391.

F. Hussain, M. Tahir, S. Abdullah, and N. Sadiq, “Quotient Seminear-rings,” Indian J. Sci. Technol., vol. 9, no. 38, 2016, doi: https://doi.org/10.17485/ijst/2016/v9i38/89115.

R. Vijayakumar and A. D. Bharathi, “Quotient Ternary Seminear Rings,” Malaya J. Mat., vol. 9, no. 1, pp. 715–719, 2021, doi: https://doi.org/10.26637/mjm0901/0125.

M. F. Fatimah, F. Hasnani, and N. P. Puspita, “Quotient Seminear-rings of the Endomorphism of Seminear-rings,” vol. 16, no. 3, pp. 887–896, 2022.

C. Bergman, Universal Algebra Fundamentals and Selected Topics. Ames: CRC Press, 2012.

K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science. New York, 2002.

W. A. Dudek, K. Glazek, and B. Gleichgewicht, “A Note on the Axioms of n-groups,” Colloq. Math. Soc. János Bolyai, pp. 195–202, 1977, doi: 10.1177/030641909702500409.

B. Gleichgewicht and K. Głazek, “Remarks on n-groups as Abstract Algebras,” Colloq. Math., vol. 17, no. 2, pp. 209–219, 1967.

W. G. van Hoorn and B. van Rootselaar, “Fundamental Notions in the Theory of Seminearrings,” Compos. Math., vol. 18, pp. 65–78, 1967.

T. W. Hungerford, Algebra, 1st ed. New York: Springer, 1974.

C. Pelea, “Hyperrings and α⁎-relations. A General Approach,” J. Algebr., vol. 383, pp. 104–128, 2013, doi: https://doi.org/10.1016/j.jalgebra.2013.02.025.

S. Mirvakili and B. Davvaz, “Characterization of Additive (m,n)-semihyperrings,” Kyungpook Math. J., vol. 55, no. 3, pp. 515–530, 2015, doi: 10.5666/KMJ.2015.55.3.515.

Downloads

Published

2024-04-29

How to Cite

[1]
M. S. L. Liedokto and M. M. Nurwigantara, “Kongruensi dan Homomorfisma (m,n)-Seminearring”, JaMES, vol. 7, no. 1, pp. 21–32, Apr. 2024.
Abstract View: 24, PDF Download: 10