Pemodelan dan Peramalan Data Ekspor Sektor Pertanian Menggunakan Model Vector Autoregressive (VAR)
Abstract View: 386, PDF Download: 329DOI:
https://doi.org/10.32665/james.v6i1.1030Keywords:
Vector Autoregressive (VAR), Granger Causality, Peramalan, ForecastingAbstract
Model Vector Autoregressive (VAR) merupakan salah satu pemodelan dalam statistika yang dapat digunakan untuk pemodelan data multivariat time series yang biasa ditemukan dalam bidang keuangan, manajemen, bisnis dan ekonomi. Model VAR menganalisis data time series secara simultan untuk mendapatkan kesimpulan yang tepat dan dapat menjelaskan perilaku hubungan antar variabel endogeneous maupun antar variabel endegeneous dan eksogeneous secara dinamis. Selain itu model VAR juga dapat menjelaskan mengenai hubungan antar variabel selain hanya dipengaruhi oleh faktor dirinya sendiri dari waktu ke waktu dengan menggunakan Granger Causality. Pada studi ini, kami akan mendiskusikan dan menentukan model terbaik yang dapat mendeskripsikan hubungan antar tiga vektor data timeseries yaitu data nilai ekspor komoditas pertanian dengan variabel nilai ekspor biji kopi, biji coklat dan tembakau Indonesia di mana data merupakan data bulanan dari tahun 2007-2018. Beberapa model diterapkan pada data seperti model VAR(1), VAR(2) ,VAR(3), VAR(4) dan VAR(5) . Hasilnya, model VAR(2) terpilih sebagai model terbaik dengan kriteria pemilihan model AICC, SBC, AIC dan HQC. Perilaku secara dinamis dari ketiga variabel nilai ekspor biji kopi, biji coklat dan tembakau Indonesia dijelaskan oleh Granger Causality. Selanjutnya, forecasting dari data ini dilakukan selama 10 bulan ke depan di mana model VAR(2) yang terpilih sebagai model terbaik hanya cocok digunakan untuk forecasting dalam waktu yang singkat.
References
G. Kirchgässner and J. Wolters, “Introduction to Modern Time Series Analysis,” Introduction to Modern Time Series Analysis, pp. 1–274, 2007, doi: 10.1007/978-3-540-73291-4.
C. A. Sims, “Macroeconomics and Reality,” Econometrica, vol. 48, no. 1, p. 1, Jan. 1980, doi: 10.2307/1912017.
D. Peña et al., “A course in time series analysis,” p. 460, 2001.
S. Zahara and Sugianto, “Peramalan Data Indeks Harga Konsumen Berbasis Time Series Multivariate Menggunakan Deep Learning,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 24–30, Feb. 2021.
J. H. Stock and M. W. Watson, “Forecasting inflation,” J Monet Econ, vol. 44, no. 2, pp. 293–335, Oct. 1999, doi: 10.1016/S0304-3932(99)00027-6.
A. Sharma, S. Giri, S. Surange, R. Shetty, and V. Shetty, “International Journal of Energy Economics and Policy Relationship between Crude Oil Prices and Stock Market: Evidence from India,” International Journal of Energy Economics and Policy |, vol. 8, no. 4, pp. 331–337, 2018.
I. Zuhroh, H. Kusuma, and S. Kurniawati, “An Approach of Vector Autoregression Model for Inflation Analysis in Indonesia,” Journal of Economics, Business & Accountancy Ventura, vol. 20, no. 3, Mar. 2018.
Warsono, E. Russel, Wamiliana, Widiarti, and M. Usman, “Vector autoregressive with exogenous variable model and its application in modeling and forecasting energy data: Case study of PTBA and HRUM energy,” International Journal of Energy Economics and Policy, vol. 9, no. 2, pp. 390–398, 2019.
G. Pagalung, M. HKara, S. Doktoral Ekonomi Islam UIN Alauddin, A. Universitas Hasanuddin, and E. Syariah UIN Alauddin, “Vector Auto Regressive (VAR) Model untuk Analisis Hubungan Pembiayaan Murabahah dan Profitabilitas Bank Umum Syariah di Indonesia,” SEIKO : Journal of Management & Business, vol. 5, no. 1, pp. 2021–2032, 2021.
P. D. Febrianti and R. Dwi, “Metode Vector Autoregressive (Var) Dalam Menganalisis Pengaruh Kurs Mata Uang Terhadap Ekspor Dan Impor Di Indonesia,” 2020.
S. Y. Husodo and others, “Pertanian Mandiri,” Jakarta: Penebar Swadaya, 2004.
Dumairy, Sumiharti, and Yati, Perekonomian Indonesia. Jakarta: Erlangga, 1977.
X. Wang, A. Wirth, and L. Wang, “Structure-based statistical features and multivariate time series clustering,” Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 351–360, 2007.
L. Wang, Z. Wang, and S. Liu, “An effective multivariate time series classification approach using echo state network and adaptive differential evolution algorithm,” Expert Syst Appl, vol. 43, pp. 237–249, Jan. 2016.
R. S. Tsay, “Multivariate time series analysis : with R and financial applications”.
W. W. S. Wei, “Time series analysis: univariate and multivariate,” Methods. Boston, MA: Pearson Addison Wesley, 2006.
D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” J Am Stat Assoc, vol. 74, no. 366a, pp. 427–431, Jun. 2012.
P. J. Brockwell and R. A. D. Springer, “Introduction to Time Series and Forecasting, Second Edition”.
R. S. Tsay, “Analysis of financial time series,” p. 677, 2010.
N. D. Gujarati and D. C. Porter, “Basic Econometrics. International Edition McGraw-Hill/Irwin, A Business Unit of The McGraw-Hill Companies,” Inc., New York, 2009.
A. Pankratz, “Forecasting with dynamic regression models,” p. 386, 1991.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Journal of Mathematics Education and Science
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work