Peramalan Jumlah Penumpang Kapal di Pelabuhan Balikpapan dengan SARIMA
Abstract View: 206, PDF Download: 104DOI:
https://doi.org/10.32665/statkom.v2i2.2303Keywords:
Jumlah Penumpang Kapal, Peramalan, RMSE, SARIMAAbstract
Latar Belakang: Peramalan jumlah kedatangan penumpang kapal dalam negeri di pelabuhan dalam negeri sangat penting untuk antisipasi lonjakan penumpang.
Tujuan: Tujuan dari penelitian ini adalah mendapatkan model terbaik untuk peramalan jumlah kedatangan penumpang kapal.
Metode: Penelitian ini menggunakan metode Seasonal Autoregressive Integrated Moving Average (SARIMA). Data jumlah kedatangan penumpang kapal dalam negeri di Pelabuhan Balikpapan dari Januari 2017 sampai dengan Desember 2021. Root mean absolute error (RMSE) digunakan untuk membandingkan akurasi peramalan.
Hasil: Model SARIMA yang dihasilkan untuk jumlah kedatangan penumpang kapal dalam negeri di Pelabuhan Balikpapan yaitu SARIMA(1,0,0)(1,0,0)12 dan SARIMA(1,0,0)(0,0,1)12 dengan RMSE masing-masing sebesar 9442.62 dan 9608.54.
Kesimpulan: Model terbaik untuk peramalan jumlah kedatangan penumpang kapal di Pelabuhan Balikpapan adalah SARIMA(1,0,0)(1,0,0)12.
References
Arsy, M. F. (2021). Kebijakan maritim dalam menunjang keselamatan dan keamanan transportasi laut. Sensistek: Riset Sains Dan Teknologi Kelautan, 56-59. https://doi.org/10.62012/sensistek.v4i1.19406
Bidangan, J., Purnamasari, I., & Hayati, M. N. (2016). Perbandingan peramalan metode double exponential smoothing satu parameter brown dan metode double exponential smoothing dua parameter holt. Jurnal Statistika Universitas Muhammadiyah Semarang, 4(1). https://doi.org/10.26714/jsunimus.4.1.2016.%25p
La Murdani, A. I., & Nanlohy, Y. W. A. (2021). IMPLEMENTASI MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) UNTUK PERAMALAN JUMLAH PENUMPANG KAPAL LAUT DI PELABUHAN AMBON. VARIANCE: Journal of Statistics and Its Applications, 3(2), 81-90. https://doi.org/10.30598/variancevol3iss2page81-90
Malisan, J., & Chisdijanto, I. H. (2017). Analisis Tingkat Pelayanan Terminal Penumpang Pelabuhan Balikpapan. Jurnal Penelitian Transportasi Laut, 19(2), 76-87. https://doi.org/10.25104/transla.v19i2.346
Palilu, A. (2018). Analisis Pengaruh Pembangunan Infrastruktur Transportasi Terhadap Produk Domestik Regional Bruto Kota Ambon. Jurnal Buletin Studi Ekonomi, 2. https://doi.org/10.24843/BSE.2018.v23.i02.p06
Pratiwi, A., Safitri, D., & Warsito, B. (2018). PERAMALAN PENUMPANG PELAYARAN DALAM NEGERI DI PELABUHAN TANJUNG PRIOK DENGAN METODE ARIMA BOX-JENKINS DAN METODE VARIASI KALENDER ARIMAX. Jurnal Statistika Universitas Muhammadiyah Semarang, 6(1). https://doi.org/10.26714/jsunimus.6.1.2018.%25p
Putri, S., & Sofro, A. (2022). Peramalan jumlah keberangkatan penumpang pelayaran dalam negeri di pelabuhan Tanjung Perak menggunakan metode ARIMA dan SARIMA. MATHunesa: Jurnal Ilmiah Matematika, 10(1), 61-67. https://doi.org/10.26740/mathunesa.v10n1.p61-67
Rachman, R. (2018). Penerapan metode moving average dan exponential smoothing pada peramalan produksi industri garment. Jurnal Informatika, 5(2), 211-220. https://doi.org/10.31294/ji.v5i2.3309
Silfiani, M. (2023). MODEL GABUNGAN (ANSAMBEL) SARIMA DAN JARINGAN SARAF TIRUAN UNTUK PERAMALAN BEBAN LISTRIK. VARIANCE: Journal of Statistics and Its Applications, 5(2), 193-200. https://doi.org/10.30598/variancevol5iss2page193-200
Silfiani, M., Aprillia, H., & Fitriani, Y. (2023, July). Comparing Various Combined Techniques at Seasonal Autoregressive Integrated Moving Average (SARIMA) for Electrical Load Forecasting. In 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA) (pp. 376-381). IEEE. https://doi.org/10.1109/ISITIA59021.2023.10221130
Silfiani, M., Hayati, F. N., & Azka, M. (2023). Application of Double Seasonal Autoregressive Integrated Moving Average (DSARIMA) for Stock Forecasting. Jurnal Statistika dan Komputasi, 2(1), 12-19. https://doi.org/10.32665/statkom.v2i1.1594
Wei, W. W. S. (2006). Time Series Analysis - Univariate and Multivariate Methods, Second edition. Pearson Addison Wesley, Boston.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this Journal agree to the following terms:
- The author retains copyright and grants the Journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allows others to share the work within an acknowledgement of the work’s authorship and initial publication of this Journal.
- Authors can enter into a separate, additional contractual arrangement for the non-exclusive distribution of the Journal’s published version of the work (e.g. acknowledgement of its initial publication in this Journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) before and during the submission process, as it can lead to productive exchanges and earlier and more extraordinary citations of published works.